资源类型

期刊论文 929

会议视频 16

年份

2024 1

2023 74

2022 70

2021 81

2020 58

2019 43

2018 75

2017 60

2016 28

2015 51

2014 44

2013 30

2012 21

2011 31

2010 43

2009 27

2008 54

2007 55

2006 17

2005 9

展开 ︾

关键词

绿色化工 6

过程强化 6

优化 4

碳中和 4

不确定性 3

人工智能 3

智能制造 3

DSM(设计结构矩阵) 2

三峡工程 2

催化剂 2

催化裂化 2

催化裂解 2

凝固过程 2

层次分析法 2

废水 2

智能优化制造 2

机器学习 2

模糊控制 2

流程工业 2

展开 ︾

检索范围:

排序: 展示方式:

Process analysis of syngas production by non-catalytic POX of oven gas

Fuchen WANG , Xinwen ZHOU , Wenyuan GUO , Zhenghua DAI , Xin GONG , Haifeng LIU , Zunhong YU ,

《能源前沿(英文)》 2009年 第3卷 第1期   页码 117-122 doi: 10.1007/s11708-008-0078-2

摘要: A non-catalytic POX of oven gas is proposed to solve the problem of secondary pollution due to solid wastes produced from the great amount of organic sulfur contained in oven gas in the traditional catalytic partial oxidation (POX) process. A study of the measurement of flow field and a thermodynamic analysis of the process characteristics were conducted. Results show that there exist a jet-flow region, a recirculation-flow region, a tube-flow region, and three corresponding reaction zones in the non-catalytic POX reformer. The combustion of oven gas occurs mainly in the jet-flow region, while the reformation of oven gas occurs mainly in the other two regions. Soot would not be formed by CH cracking at above 1200°C. Since there are very little C hydrocarbons in oven gas, the soot produced would be very tiny, even if they underwent cracking reaction. The integrated model for entrained bed gasification process was applied to simulate a non-catalytic POX reformer. It indicated that the proper oxygen-to-oven gas ratio is 0.22–0.28 at different pressures in the oven gas reformation process.

关键词: oven gas     non-catalytic POX process     syngas    

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 4-17 doi: 10.1007/s11705-020-1933-x

摘要: This review article summarizes the key published research on the topic of bio-oil upgrading using catalytic and non-catalytic supercritical fluid (SCF) conditions. The precious metal catalysts Pd, Ru and Pt on various supports are frequently chosen for catalytic bio-oil upgrading in SCFs. This is reportedly due to their favourable catalytic activity during the process including hydrotreating, hydrocracking, and esterification, which leads to improvements in liquid yield, heating value, and pH of the upgraded bio-oil. Due to the costs associated with precious metal catalysts, some researchers have opted for non-precious metal catalysts such as acidic HZSM-5 which can promote esterification in supercritical ethanol. On the other hand, SCFs have been effectively used to upgrade crude bio-oil without a catalyst. Supercritical methanol, ethanol, and water are most commonly used and demonstrate catalyst like activities such as facilitating esterification reactions and reducing solid yield by alcoholysis and hydrolysis, respectively.

关键词: bio-oil     upgrading     supercritical     review    

Nitrous oxide formation and emission in selective non-catalytic reduction process

YANG Weijuan, ZHOU Junhu, ZHOU Zhijun, CEN Kefa

《能源前沿(英文)》 2007年 第1卷 第2期   页码 228-232 doi: 10.1007/s11708-007-0031-9

摘要: Pulverized coal-fired boilers are not nitrous oxide sources because of high temperature combustion. But selective non-catalytic reduction may produce NO by NO reduction reactions. Chemical kinetics calculation and experimental research were used to find out the mechanism between NO and N-agent species, N-agent/NO nitrogen stoichiometric ratio (NSR), reaction temperature, reaction time, etc. The results show that NO emission decreases with increasing reaction temperature and NSR decreases when reaction time is enough. NO concentration first increases then decreases as SNCR reactions keep on occuring. Ammonia SNCR tests indicated that NO emission was 0 7 μmol/mol. About 8.7% of NO was transformed to NO, and NO emission was 27.8 μmol/mol at urea-SNCR test. Urea-SNCR is likely to bring NO emission problem.

Non-equilibrium model for catalytic distillation process

WANG Feng, ZHAO Ning, LI Junping, XIAO Fukui, WEI Wei, SUN Yuhan

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 379-384 doi: 10.1007/s11705-008-0071-7

摘要: A new improved tri-diagonal method was developed for the non-equilibrium stage model of the catalytic distillation by coupling consumptive reaction coefficient. The reactions in the distillation column were divided into generative reaction and consumptive reaction. The non-equilibrium stage model was introduced for the catalytic distillation process of the dimethyl carbonate (DMC) synthesis by urea methanolysis over solid based catalyst, and the improved tri-diagonal method was used to solve the model equations. Comparison of predicted results with experiment data shows that the mean relative error of the yield of DMC was 3.78% under different conditions such as different operating pressures and reaction temperatures. The improved tri-diagonal matrix method could avoid the negative values of the liquid compositions during the calculations and restrain the fluctuation of compositions by slowing down the variations of the values in the iteration. The modeling results show that the improved tri-diagonal method was appropriate for system containing a wide range of boiling point components and a different rate of reactions.

A novel fluid catalytic cracking process for maximizing

Youhao Xu, Shouye Cui

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 9-23 doi: 10.1007/s11705-017-1696-1

摘要: The maximizing iso-paraffins (MIP) developed by RIPP has improved gasoline quality to meet the demand of motor gasoline specification. A concept that two different reaction zones include cracking zone and conversion zone is proposed as the fundamental of MIP by research on fluid catalytic cracking (FCC) reaction chemistry. Based on the concept, the MIP process is featured by applying a novel sequential two-zone riser in conjunction with proprietary catalyst and engineering technique. The developed MIP process can not only improve gasoline yield or gasoline plus propylene yields but also produce gasoline with a higher content of -paraffins and a lower content of sulfur. A minimum octane number loss is achieved when MIP gasoline is treated by downstream desulfurization technology (RSDS/S Zorb). The combination of MIP and RSDS/S Zorb processes creates a very competitive route, which is different from the technical route used by other developed countries, to upgrade the quality of motor gasoline with the lowest economic costs in China. In just one decade, the processing capacity of MIP units has accounted for about 60% of the domestic total processing capacity of FCC units. The MIP process is gradually becoming a new generation of FCC technology.

关键词: gasoline     iso-paraffins     FCC     desulfurization     octane number    

Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation

LI Ning, LI Guangming, YAO Zhenya, ZHAO Jianfu

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 190-195 doi: 10.1007/s11783-007-0033-1

摘要: Catalytic wet air oxidation (CWAO) is one of the most promising technologies for pollution abatement. Developing catalysts with high activity and stability is crucial for the application of the CWAO process. The Mn/Ce complex oxide catalysts for CWAO of high concentration phenolcontaining wastewater were prepared by coprecipitation. The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis. The Mn/Ce serial catalysts were characterized by Brunauer Emmett Teller (BET) analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry (ICP-AES). The results show that the catalysts have high catalytic activities even at a low temperature (80?C) and low oxygen partial pressure (0.5 MPa) in a batch reactor. The metallic ion leaching is comparatively low (Mn<6.577 mg/L and Ce<0.6910 mg/L, respectively) in the CWAO process. The phenol, COD, and TOC removal efficiencies in the solution exceed 98.5% using the optimal catalyst (named CSP). The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.

关键词: torch-atomic emission     Brunauer     Catalytic     process     stability    

Dual-reaction-center catalytic process continues Fenton’s story

Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1261-x

摘要: Abstract • Dual-reaction-center (DRC) system breaks through bottleneck of Fenton reaction. • Utilization of intrinsic electrons of pollutants is realized in DRC system. • DRC catalytic process well continues Fenton’s story. Triggered by global water quality safety issues, the research on wastewater treatment and water purification technology has been greatly developed in recent years. The Fenton technology is particularly powerful due to the rapid attack on pollutants by the generated hydroxyl radicals (•OH). However, both heterogeneous and homogeneous Fenton/Fenton-like technologies follow the classical reaction mechanism, which depends on the oxidation and reduction of the transition metal ions at single sites. So even after a century of development, this reaction still suffers from its inherent bottlenecks in practical application. In recent years, our group has been focusing on studying a novel heterogeneous Fenton catalytic process, and we developed the dual-reaction-center (DRC) system for the first time. In the DRC system, H2O2 and O2 can be efficiently reduced to reactive oxygen species (ROS) in electron-rich centers, while pollutants are captured and oxidized by the electron-deficient centers. The obtained electrons from pollutants are diverted to the electron-rich centers through bonding bridges. This process breaks through the classic Fenton mechanism, and improves the performance and efficiency of pollutant removal in a wide pH range. Here, we provide a brief overview of Fenton’s story and focus on combing the discovery and development of the DRC technology and mechanism in recent years. The construction of the DRC and its performance in the pollutant degradation and interfacial reaction process are described in detail. We look forward to bringing a new perspective to continue Fenton’s story through research and development of DRC technology.

关键词: Dual reaction centers     Fenton     Pollutant utilization     Electron transfer    

Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101

Ehsan Rahmani, Mohammad Rahmani

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1100-1111 doi: 10.1007/s11705-019-1891-3

摘要: A solvothermal method was used to synthesize MIL-101(Fe) and MIL-88(Fe), which were used for alkylation of benzene. The synthesized catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscope, dynamic light scattering, and BET techniques. Metal-organic frameworks (MOFs) were modeled to investigate the catalytic performance and existence of mass transfer limitations. Calculated effectiveness factors revealed absence of internal and external mass transfer. Sensitivity analysis revealed best operating conditions over MIL-101 at 120°C and 5 bar and over MIL-88 at 142°C and 9 bar.

关键词: MOFs     alkylation     ethylbenzene     catalysts pellet model     kinetic model     sensitivity analysis    

靶向生产低碳烯烃的催化裂化技术——反应机理、生产方案和工艺展望 Review

许友好, Yanfen Zuo, Wenjie Yang, Xingtian Shu, Wei Chen, Anmin Zheng

《工程(英文)》 2023年 第30卷 第11期   页码 100-109 doi: 10.1016/j.eng.2023.02.018

摘要:

Light olefins are important organic building blocks in the chemicals industry. The main low-carbon olefin production methods, such as catalytic cracking and steam cracking, have considerable room for improvement in their utilization of hydrocarbons. This article provides a thorough overview of recent studies on catalytic cracking, steam cracking, and the conversion of crude oil processes. To maximize the production of light olefins and reduce carbon emissions, the perceived benefits of various technologies are examined. Taking olefin generation and conversion as a link to expand upstream and downstream processes, a targeted catalytic cracking to olefins (TCO) process is proposed to meet current demands for the transformation of oil refining into chemical production. The main innovations of this process include a multiple feedstock supply, the development of medium-sized catalysts, and a diameter-transformed fluidized-bed reactor with different feeding schemes. In combination with other chemical processes, TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions.

关键词: Light olefins     Steam cracking     Catalytic cracking     TCO process     Oil processing revolution    

Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using

Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-017-0971-1

摘要: Microwave irradiation has been used to prepare Al, Fe-pillared clays from a natural Tunisian smectite from the El Hicha deposit (province of Gabes). Chemical analysis, XRD spectra and surface properties evidenced the success of pillaring process. The obtained solids present higher surface area and pore volume than conventionally prepared Al-Fe pillared clays. The main advantages of the microwave methodology are the considerable reduction of the synthesis time and the consumption of water. The microwave-derived Al-Fe pillared clays have been tested for catalytic wet air oxidation (CWAO) of phenol in a stirred tank at 160°C and 20 bar of pure oxygen pressure. These materials are efficient for CWAO of phenol and are highly stable despite the severe operating conditions (acidic media, high pressure, high temperature). The catalyst deactivation was also significantly hindered when compared to conventionally prepared clays. Al-Fe pillared clays prepared by microwave methodology are promising as catalysts for CWAO industrial water treatment.

关键词: Water     Catalytic wet air oxidation     Pillared clays     Microwave     Phenol    

Sorption enhanced catalytic CF

Jae-Yun Han, Chang-Hyun Kim, Boreum Lee, Sung-Chan Nam, Ho-Young Jung, Hankwon Lim, Kwan-Young Lee, Shin-Kun Ryi

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 537-544 doi: 10.1007/s11705-017-1651-1

摘要: In this study, we developed a three-stage catalyst-adsorbent reactor for the catalytic hydrolysis of CF . Each stage is composed of a catalyst bed followed by an adsorbent bed using Ca(OH) to remove HF. The three stages are connected in series to enhance the hydrolysis of CF and eliminate a scrubber to dissolve HF in water at the same time. With a 10 wt-% Ce/Al O catalyst prepared by the incipient wetness method using boehmite and a granular calcium hydroxide as an adsorbent, the CF conversion in our proposed reactor was 7%–23% higher than that in a conventional single-bed catalytic reactor in the temperature range of 923–1023 K. In addition, experimental and numerical simulation (Aspen HYSYS ) results showed a reasonable trend of increased CF conversion with the adsorbent added and these results can be used as a useful design guideline for our newly proposed multistage reactor system.

关键词: PFCs     catalytic hydrolysis     calcium hydroxide     sorption enhanced     process simulation    

A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd

Enxian Yuan, Xiangwei Ren, Li Wang, Wentao Zhao

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 177-184 doi: 10.1007/s11705-016-1604-0

摘要: The hydrogenation of 2-ethylanthraquinone (eAQ), 2- -amylanthraquinone (taAQ) and their mixtures with molar ratios of 1:1 and 1:2 to the corresponding hydroquinones (eAQH and taAQH ) were studied over a Pd/Al O catalyst in a semi-batch slurry reactor at 60 °C and at 0.3 MPa. Compared to eAQ, TaAQ exhibited a significantly slower hydrogenation rate (about half) but had a higher maximum yield of H O and a smaller amount of degradation products. This can be ascribed to the longer and branched side chain in taAQ, which limits its accessibility to the Pd surface and its diffusion through the pores of the catalyst. Density functional theory calculations showed that it is more difficult for taAQ to adsorb onto a Pd (111) surface than for eAQ. The hydrogenation of the eAQ/taAQ mixtures had the slowest rates, lowest H O yields and the highest amounts of degradation products.

关键词: hydrogenation     hydrogen peroxide     anthraquinone     Pd catalyst     AO process    

Recent advances in the catalytic pyrolysis of biomass

Changwei HU, Yu YANG, Jia LUO, Pan PAN, Dongmei TONG, Guiying LI

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 188-193 doi: 10.1007/s11705-010-1015-6

摘要: Biomass is considered as a renewable and alternative resource for the production of fuels and chemicals, since it is the only carbon and hydrogen containing resource that we can find in the world except for fossil resources, capable of being converted to hydrocarbons. The pyrolytic liquefaction of biomass is a promising way to convert biomass to useful products. This paper briefly surveys the present status of the direct catalytic pyrolysis for the liquefaction of biomass. The direct use of catalysts could decrease the pyrolysis temperature, increase the conversion of biomass and the yield of bio-oil, and change the distribution of the pyrolytic liquid products then improve the quality of the bio-oil obtained. The fact that biomass is in solid state present great challenges for its conversion and for the effective use of catalysts due to the bad heat transfer characteristics and bad mass transfer properties. These barriers appeal for the development of a new catalyst and new catalytic process as well as the integration of both. Process design and process intensification are of significant importance in the catalytic conversion of biomass.

关键词: biomass     liquefaction     catalysis     bio-oil     process intensification    

Electro-catalytic activity of CeO modified graphite felt for carbamazepine degradation via E-peroxoneprocess

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1410-x

摘要:

•CeOx/GF-EP process had the better degradation efficiency than GF-EP process.

关键词: E-peroxone     CeOx     Graphite felt     Carbamazepine     Mineralization    

Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts

Jinli ZHANG, Nan LIU, Wei LI, Bin DAI

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 514-520 doi: 10.1007/s11705-011-1114-z

摘要: Polyvinyl chloride (PVC) has become the third most used plastic after polyethylene and polypropylene and the worldwide demand continues to increase. Polyvinyl chloride is produced by polymerization of the vinyl chloride monomer (VCM), which is manufactured industrially via the dehydrochlorination of dichloroethane or the hydrochlorination of acetylene. Currently PVC production through the acetylene hydrochlorination method accounts for about 70% of the total PVC production capacity in China. However, the industrial production of VCM utilizes a mercuric chloride catalyst to promote the reaction of acetylene and hydrogen chloride. During the hydrochlorination, the highly toxic mercuric chloride tends to sublime, resulting in the deactivation of the catalyst and also in severe environmental pollution problems. Hence, for China, it is necessary to explore environmental friendly non-mercury catalysts for acetylene hydrochlorination as well as high efficiency novel reactors, with the aim of sustainable PVC production via the acetylene-based method. This paper presents a review of non-mercury heterogeneous and homogeneous catalysts as well as reactor designs, and recommends future work for developing cleaner processes to produce VCM over non-mercury catalysts with high activity and long stability.

关键词: polyvinyl chloride     vinyl chloride monomer     acetylene hydrochlorination     non-mercury catalysts     green chemical process    

标题 作者 时间 类型 操作

Process analysis of syngas production by non-catalytic POX of oven gas

Fuchen WANG , Xinwen ZHOU , Wenyuan GUO , Zhenghua DAI , Xin GONG , Haifeng LIU , Zunhong YU ,

期刊论文

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

期刊论文

Nitrous oxide formation and emission in selective non-catalytic reduction process

YANG Weijuan, ZHOU Junhu, ZHOU Zhijun, CEN Kefa

期刊论文

Non-equilibrium model for catalytic distillation process

WANG Feng, ZHAO Ning, LI Junping, XIAO Fukui, WEI Wei, SUN Yuhan

期刊论文

A novel fluid catalytic cracking process for maximizing

Youhao Xu, Shouye Cui

期刊论文

Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation

LI Ning, LI Guangming, YAO Zhenya, ZHAO Jianfu

期刊论文

Dual-reaction-center catalytic process continues Fenton’s story

Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu

期刊论文

Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101

Ehsan Rahmani, Mohammad Rahmani

期刊论文

靶向生产低碳烯烃的催化裂化技术——反应机理、生产方案和工艺展望

许友好, Yanfen Zuo, Wenjie Yang, Xingtian Shu, Wei Chen, Anmin Zheng

期刊论文

Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using

Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr

期刊论文

Sorption enhanced catalytic CF

Jae-Yun Han, Chang-Hyun Kim, Boreum Lee, Sung-Chan Nam, Ho-Young Jung, Hankwon Lim, Kwan-Young Lee, Shin-Kun Ryi

期刊论文

A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd

Enxian Yuan, Xiangwei Ren, Li Wang, Wentao Zhao

期刊论文

Recent advances in the catalytic pyrolysis of biomass

Changwei HU, Yu YANG, Jia LUO, Pan PAN, Dongmei TONG, Guiying LI

期刊论文

Electro-catalytic activity of CeO modified graphite felt for carbamazepine degradation via E-peroxoneprocess

期刊论文

Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts

Jinli ZHANG, Nan LIU, Wei LI, Bin DAI

期刊论文